
A Review on Fault Tolerant Analysis for Hard
Real Time Safety Critical Embedded System

Nisha O. S., Dr. K. Siva Sankar

IT Department, Nooral Islam University,
Nagercoil, India

Abstract— Safety-Critical Applications have to function
correctly and deliver high level of quality-of-service even in
the presence of faults. But radiation problem in embedded
system is a serious threat. There is an increasing concern
about the mitigation of radiation effects in embedded systems.
The protection of processor-based systems to mitigate the
harmful effect of transient faults (soft errors) is gaining
importance as technology shrinks. This review paper presents
various methodologies for facilitating the design of fault-
tolerant embedded systems and is supported by an
infrastructure that permits to easily combine
hardware/software soft errors mitigation techniques. The
proposed system combines hardware and a software
mitigation technique, which facilitates the design space
exploration, developed to support the fault tolerance co-design
approach and is added to the most vulnerable parts. A wide
industrial consensus about the necessity of a set of safety
definitions leads to the introduction of several functional
safety standards. To achieve an embedded systems comply
with these requirements, thorough testing is needed during
early design stages of the integrated device.

Keywords—Soft error, Hardening Infrastructure, Software
Hardening Environment, SEU, SET.

1. INTRODUCTION
Safety is a property of a system, which will not

endanger human life or environment. Now microprocessors
became the heart of most of the digital systems because of
their capabilities in programming, cost effectiveness and
performance. Technology improves a lot which results in
the use of microprocessors in various application areas.
Several security systems are used and most of them are
very powerful also. But the problem faced by most of the
Embedded System is the radiation problem. This is due to
the miniaturization of electronic components.

One of the important advantages in the life of a
microcontroller is the miniaturization of electronic
components and it results in the improvement of
performance and reduction of silicon area. As technology
shrinking occurs automatically the voltage. Source level
and noise margins are reduced making electronic devices
become less reliable and CMOS circuits are more
susceptible to transient faults induced by radiation. This
radiation problem doesn’t make any damage or harm to the
system but results in incorreccircuit behaviour and signal
alteration named soft errors. Many safety-critical
applications have also strict time and cost constrains, which
means that not only faults have to be tolerated but also the
constraints should be satisfied.

This paper reviews several design optimization
strategies and scheduling techniques that take fault

tolerance into account. Finally, quality-of-service aspects
have been addressed in the thesis for fault-tolerant
embedded systems with soft and hard timing constraints.
This review paper present several key challenges and some
solutions to the design and optimization of such system. In
particular it will answer some questions of if hardening
should be done and how much hardening should be
implemented.

A co-design methodology [1] is used to mitigate soft
errors. A design space with software and hardware is used
to achieve customized fault tolerant system to meet
requirements of application. A hardening infrastructure is
used to generate different versions of the design using
several combinations of both hardware and software.

Most efforts are devoted in the mitigation of errors in
memory that is Single Event Upset (SEU). With
nanometric technologies transient faults in combinational
logic circuits are also present known as Single Event
Transients (SET) which happens when the charge collected
from an ionization event discharges in the form of spur ion
signal travelling through the circuit.

When the complexity of the system moves from simple
to complex several safety definitions [2] are introduced to
support it. A flexible fault injection and power estimation
platform to enable through examinations of complex
system is needed which determine the fault resistance of
embedded system.

This paper presents an approach to system-level
optimization of error detection implementation in the
context of fault-tolerant real time distributed embedded
systems used for safety-critical applications. Main focus in
this paper is on the efficient implementation of the error
detection mechanisms

This paper is organized as follows: section 2 describes
about soft error; Section 3 describes the hardening
infrastructure; Section 4 describes the fault injection
techniques; Section 5 describes a rapid prototyping
platform; Section 6 summarizes some concluding remarks.

II. SOFT ERROR
Soft errors may be caused due to the mistake in design

or construction of a component. After observing a soft
error, there is no implication that the system is any less
reliable than before. In a computer's memory system, a soft
error changes an instruction in a program or a data value. A
soft error will not damage a system's hardware; the only
damage is to the data that is being processed.
• Chip-Level Soft Error

These errors occur when the radioactive atoms in the
chip's material decay and release alpha particles into

Nisha O. S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4582-4586

www.ijcsit.com 4582

the chip. Because an alpha particle contains a positive
charge and kinetic energy, the particle can hit a
memory cell and cause the cell to change state to a
different value. The atomic reaction is so tiny that it
does not damage the actual structure of the chip.

• System-Level Soft Error
These errors occur when the data being processed is hit
with a noise phenomenon; typically the data is on a
data bus. The computer tries to interpret the noise as a
data bit, which can cause errors in addressing or
processing program code. The bad data bit can even be
saved in memory and cause problems at a later time.

If a soft error is detected, it may be corrected by rewriting
the correct data in the place of erroneous data. It is difficult
to discover a soft error in the starting stage itself. Before
the correction can occur, the system may have crashed. Soft
errors involve changes to data storage circuit, but not
changes to the physical circuit itself. If the data is rewritten,
the circuit will work perfectly again.
One technique that can be used to reduce the soft error rate
in digital circuits is called radiation hardening. The
reduction of structure, sizes in microcontrollers, an
environmental conditions results in increase the
susceptibility of embedded systems to soft errors. As a
result of this fault detection and tolerance became a
mandatory task. In the paper named “A JVM for Soft-
Error-Prone Embedded system” [3] describes an automated
application of fault detection and tolerance measures based
on the type of the system, programming language etc and
facilitates an easy evaluation of the protection
characteristics and costs.

III. HARDENING INFRASTRUCTURE
In computing, hardening is usually the process of

securing a system by reducing its surface of vulnerability;
in principle a single-function system is more secure than a
multipurpose one.

The purpose of system hardening is to eliminate as
many security risks as possible. This is typically done by
removing all non-essential software programs and utilities
from the computer. While these programs may offer useful
features to the user, if they provide "back-door" access to
the system, they must be removed during system hardening.

In the paper named “Application-driven co-design of
fault-tolerant industrial systems” [4], a hardening
infrastructure is used to support fault tolerance co design
approach. For the hybrid error mitigation in embedded
system a hardware /software co-design technique is used.
Applying the protection to the most vulnerable parts of
both software and hardware results in fault tolerant system.
To achieve this first step is the specification of system
requirements. Requirements may be either design
constraints or dependability parameters associated with
specific application. In the paper “A Co-Design Approach
for SET Mitigation in Embedded Systems” [1] describes a
co-design flow which is motivated by taking both design
constraints and dependability parameters. The protection
strategy has to be completed only after the application of
hardware based techniques. Therefore the designer has to

decide suitable strategies to protect the hardware, for
protecting the most vulnerable parts of the hardware.
There are several methods present to mitigate soft errors
such as SEU and SET effects in embedded system. The
methodologies used are Software Hardening Environment
(SHE), SEU Emulation Tools and SET Emulation Tools.

A. Software Hardening Environment

The main goal of the SHE environment is to allow the
user to design and implement software –only fault tolerance
techniques, and also apply automatically them in programs.
It is made up of a hardener and a generic Instruction Set
Simulator (ISS) jointly with several compiler front ends
and back ends to deal with different microprocessor targets
fig 1.

Fig 1: Software Hardening Environment

The ISS offers valuable information about the code
overheads of the final result and also has a characterization
to simulate program reporting about the resource utilization
and register life time.

The given compiler takes the original source code from
the supported target performs analysis and finally generates
a Generic Instruction Flow (GIF) as output. The output is
an intermediate abstraction of a program. Hardening is
performed within the Generic Hardening Core (GHC).
Finally Hardener produces a Hardened-GIF which is then
re-targeted to a custom supported microprocessor.

Considering a hardening process and the hardener
manages in a special way that all the instructions are to be
cross the boarders of SoR or Sphere of Replication[1]. It’s
the logical boundary of redundant execution within a
system and trade-off between information, time and space
redundancy. Here in this paper we can see that ISS
performs different analysis on the original and hardened
code to verify the correctness of the transformation.
Moreover it is also able to simulate SEU and SET faults
and to carry out fault injection techniques.

B. SEU Emulation Tools.

SEU’s are state changes of memory or register bits
caused by a single ion interacting with the chip. They do
not cause much damage to the device but may cause lasting
damage to the system which cannot recover from such an

Hardened
Source
Code

Generic
Instructi
on Flow

Hardened
Generic
Instruction
Flow

(GIF)

Original
Source
Code

Compiler front- ends

Hard
ener

ISS

Generic Hardening
Core (GH-Core)

(HGIF)

Compiler back-ends

Arch. 1

Arch. 2

Arch. n
1

Arch. n

…

Arch.
1

Arch.
2

Arch.
1

Arch.

…

Nisha O. S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4582-4586

www.ijcsit.com 4583

error. There are several methodologies are present in the
removal of SEU or Single Event Upset. One such method is
the compiler level implementation [5] which is present on
the paper “Compiler-level implementation of single Event
Upset errors mitigation algorithms”. Based on the
modifications of the source code of the C language
compiler protection methods are applied automatically
during source code processing at intermediate
representation of the compiled program.
Another method is the TMR or Triple Modular
Redundancy [9], describes how TMR is implemented to
mitigate SEU errors. Here Triple Modular Redundancy is
partitioned and is inserted to reduce the SEUs in the FPGA
logic paths. In this it creates three identical copies of a
module and feeding their outputs into a majority vote,
which simply outputs the most popular of the three outputs.
An SRAM based [6] technique is used in which the flipper
fault injection platform to allow testing the efficiency of the
SEU mitigation scheme is used. One of the main
component of the hardening infrastructure is FTUnShades
[7]. It is an FPGA based platform for the study of digital
circuit reliability against radiation induced soft errors. It
permits to inject faults in a selective way on the analysis in
microprocessors.
Protection is to be provided in the impact on the reliability
of each one of microprocessor sub modules due to
hierarchical injection. So it can able to find the best
candidates from the internal parts to be protected also helps
to permit complete access to all physical resources in the
design. We can inject faults in all memory elements of the
microprocessor including embedded memories and internal
flip flops and not only in microprocessor registers.

C. SET- Emulation System.
Single Event Transients, which are very difficult to model,
simulate and analysis than the closely related Single Event
Upsets [1]. Single Event Transients are happens when the
charge collected from an ionization event discharges in the
form of spurious signal travelling through the circuit.
Mitigation of SET effects is more costly than mitigate SEU
effects. Since it affects any logic node in the circuit also the
propagation of SET can produce a multiple error at
memory elements or latches.
We can eliminate transient faults by injecting faults into it
from an VLIW processors [15] by analyzing the cross
domain failures affecting redundant mitigation techniques
implemented on a statistically scheduled data path. It
describes a fault injection analysis of transient faults
affecting the r-VEX VLIW processor implemented on an
FPGA platform.
A compiler based [8] methodology is used in SET
mitigation. This methodology is supported by an
infrastructure that permits to easily combine
hardware/software soft error mitigation techniques satisfy
both usual design constraints and dependability
requirements.
Another technique used is the Invariant Checkers [9]; it is a
low cost technique. It uses the software invariants to detect
transient errors affecting a system at run time. The
technique is based on the use of a publically available tool

to automate the invariant detection process and the
decomposition of complex algorithms into simpler ones
which are checked through verification of their invariants
during the execution of the program.
The effectiveness of the co-design relies on the capability
to evaluate SET sensitivity in an accurate and fast manner.
This goal is achieved using AMUSE system. It is an
emulation based system that supports SEU and SET fault
injection for any ASIC technology. For SETs pulses of the
selected duration can be injected across many clock cycles.
AMUSE uses a quantization approach that accurately
models dynamic delay effects, including electrical masking
effects . It has been also used to evaluate Soft Error Rate
due to SET.

IV. FAULT INJECTION TECHNIQUES
Fault injection means the introduction of faults into a

system for the simulation and emulation of errors.
Researchers have created many novel methods to inject
faults, which can be implemented in both hardware and
software. Such operation disruptions can be caused by
external influences like radiation, attacks, or internal
reasons like degradation. Depending on the level of
abstraction, several methods have been adopted [2].
A. Hardware Level

Here manufactured devices are available and existing
automated test equipment can be reused. The possible
points of fault injection are very limited

B. Software Level
The basic principle behind software level fault

injection is same as hardware level. The main difference
lies in the manipulation target, variables and other system
elements are changed directly while the hardware works are
originally designed.

There are so many types of errors are seen on
embedded system especially in distributed environment. It
can be permanent, intermittent or transient. Transient and
intermittent faults appear for a short time. The effects of
transient and intermittent faults are very high. They may
corrupt data or lead to logic miscalculations, which can
result in the failure or dramatic quality-of service
deterioration. Transient and intermittent faults appear at a
rate much higher than the rate of permanent faults and, thus,
are very common in modern electronic systems.

Transient and intermittent faults can be seen on
hardware devices and can be reduced with hardening
techniques, i.e., improving the hardware technology and
architecture to reduce the fault rate, or in software. We
consider hardware-based hardening techniques and several
software-based fault tolerance techniques, including re
execution, software replication, and rollback recovery with
check pointing.

Engineers most often use low-cost, simulation based
fault injection to evaluate the dependability of a system that
is in the conceptual and design phases. At this point, the
system under study is only a series of high-level
abstractions; implementation details have yet to be
determined. Thus the system is simulated on the basis of
simplified assumptions. Simulation-based fault injection,
which assumes that errors or failures occur according to pre

Nisha O. S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4582-4586

www.ijcsit.com 4584

determined distribution, is useful for evaluating the
effectiveness of fault-tolerant mechanisms and a system’s
dependability; it does provide timely feedback to system
engineers. However, it requires accurate input parameters,
which are difficult to supply:

Design and technology changes often complicate the
use of past measurements. Testing a prototype, on the other
hand, allows us to evaluate the system without any
assumptions about system design, which yields more
accurate results. In prototype-based fault injection, we
inject faults into the system to [10]

a. identify dependability bottlenecks,
b. study system behaviour in the presence of faults,
c. determine the coverage of error detection and recovery

mechanisms, and
d. Evaluate the effectiveness of fault tolerance

mechanisms and performance loss.
Fault as a deviation in a hardware or software

component from its intended function can arise during all
stages in a computer system design process.

Specification, design, development, manufacturing,
assembly, and installation throughout its operational life.
Most faults that occur before full system deployment are
discovered and eliminated through testing. Faults that are
not removed can reduce a system’s dependability when it is
embedded into the system [11].The complex interactions
between errors, failures, and fault handling mechanisms
can be studied via injection experiments [12].

One method of injecting fault is a multilevel FPGA
emulation based fault injection approach for the evaluation
of SET effects called AMUSES [13]. This approach
integrates Gate level and Register Transfer level models of
the circuit under test in a FPGA and is able to switch to the
appropriate model as needed during emulation. We can use
the fault injection mechanisms for testing of Network-on-
Chips [14]. It is an innovative test architecture based on a
dual processor system which is able to extensively test
mesh based NoCs. It improves methods based on NoCs
physical implementation which allows investigating the
effects induced by several kinds of faults within the entire
network interface and router resources during NoC run time
operations.

V. RAPID PROTOTYPING PLATFORM
The proposed infrastructure establishes a complete

software hardening development environment allowing the
design and implementation of software based techniques to
be automatically applied into programs. The infrastructure
is made up of a multi-target compiler supporting several
common hardening routines, an instruction set simulator
and several compiler front ends and back ends. Fig:1.

The identification of the control flow graph and the
insertion of instructions into the source code during
compilation time are the keys for software based technique
[15].

Regarding the memory management, the Hardener is
able to identify the memory map, exact memory sections
and perform modifications over them and is described on
the paper “Rapid prototyping of Radiation Tolerant

Embedded Systems in FPGA” , [16]. Three possibilities are
supported to keep updated the memory map, dilation,
displacement and relocation.
• Dilation: When one or more instructions are inserted

during compilation time into a memory section, this
section grows and some of the instructions addresses
inside this memory section should be reassigned.

• Displacement: If dilation provokes that two or more
memory sections share some addresses, which is an
illegal situation, then the section must be completely
moved and all its instructions addresses updated.

• Reallocation: If there is a memory overflow caused by
previous instructions insertions, then it is needed to
perform a complete reallocation of the complete
memory map. During this process, free memory space
among memory sections is fully used. This situation
may happen because of the typical reduced memory
size in embedded systems.

VI. CONCLUSION

The literature survey revealed that a lot of researches
have gone in this area for a radiation tolerant embedded
system. This paper presents various methods for embedded
system hardening includes software and hardware
hardening for the mitigation of soft errors. Another
peculiarity of this paper is the introduction of various fault
injection techniques to evaluate the fault resistance of
safety critical system on chip implementation. Most recent
research areas trying to incorporate all the techniques
described in this paper to make a perfect radiation tolerant
embedded system for real time applications.

ACKNOWLEDGEMENTS

I would like to thank my supervisor and guide Prof. Dr.
K. Siva Sankar who advised and encouraged me to research
on this area. I would also like to thank all the authors of the
journals which helped me in developing this literature
survey Finally, I express my special thanks to my family
and close friends for their great support throughout my
study on this.

REFERENCES
[1] Almudena Lindoso, Luis Entrena, Enrique San Millán, Sergio

Cuenca-Asensi, Antonio Martínez- Álvarez, and Felipe Restrepo-
Calle, “A Co-Design Approach for SET Mitigation in Embedded
Systems” in IEEE Transactions on Nuclear Science, Vol. 59, N0. 4,
pp. 1034-1039, August 2012.

[2] Armin Krieg,Christopher Preschern, Johannes Grinschgl, , Christian
Steger, , Christian Kreiner,, Reinhold Weiss, Holger Bock, and Josef
Haid, “Power And Fault Emulation for Software Verification and
System Stability Testing in Safety Critical Environments” in IEEE
Transactions on Industrial Informatics, Vol. 9, No. 2, pp. 1199-1206,
May 2013.

[3] Mehdi Modarressi, Hani Javanhemmat , Seyyed Ghasem Miremadi,
Shaahin Hessabi, Morteza Najafvand, Maziar Goudarzi, and Naser
Mohamadzadeh,” A Fault-Tolerant Approach to Embedded-System
Design Using Software Standby Sparing”, in Computer Engineering
Department, Sharif University of Technology, Tehran, Iran.

[4] Restrepo-Calle, F., Guzmán-Miranday, H., Palomoy, F.R., Cuenca-
Asensi, S., “Application-driven co-design of fault-tolerant industrial
systems”, in Industrial Electronics (ISIE), 2010 IEEE International
Symposium on 4-7 July 2010, pp.2005-2010.

[5] Piotrowski, A. ; Tarnowski, S., “Compiler-level implementation of
single Event Upset errors mitigation algorithms” in Mixed Design of

Nisha O. S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4582-4586

www.ijcsit.com 4585

Integrated Circuits & Systems, 2009. MIXDES'09. MIXDES-16th
International Conference 25-27 June 2009, pp. 89-92.

[6] Alderighi M,.Casini, F. ; d'Angelo, S. ; Mancini, M. ; Pastore,
S. ; Sechi, G.R.,” Evaluation of Single Event Upset Mitigation
Schemes for SRAM based FPGAs using the FLIPPER Fault
Injection Platform, in Defect and Fault-Tolerance in VLSI Systems,
2007. DFT '07. 22nd IEEE International Symposium on , pp.105-
113, Sept. 2007.

[7] J. Napoles, H. Guzman, M. Aguirre, J. Tombs, F. Munoz, V. Baena,
A. Torralba, and L. Franquelo, “Radiation environment emulation
forVLSI designs A low cost platform based on xilinx FPGAs,” in
Proc. IEEE Int. Symp. Industrial Electronics,4-7 July 2007 pp. 3334-
3338.

[8] Martinez-Alvarez, A. ;Comput. Technol. Dept., Univ. of Alicante,
Alicante, Spain ; Cuenca-Asensi, S. ; Restrepo-Calle, F. ; Pinto,
F.R.P, “Compiler-Directed Soft Error Mitigation for Embedded
Systems” on Dependable and Secure Computing, IEEE Transactions
on March-April 2012. Vol. 9, No. 2, pp.159-172

[9] Grando, C.N. ; Inst. de Inf., Univ. Fed. do Rio Grande do Sul, Brazil ;
Lisboa, C.A. ; Moreira, A.F. ; Carro, L, “Invariant checkers: An
efficient low cost technique for run-time transient errors detection”,
in On-Line Testing Symposium, 2009. IOLTS 2009.15th IEEE
International conference on 24-26 June 2009, pp. 35 – 40

[10] Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer
University of Illinois at Urbana Champaig, Theme Feature on, ”Fault
Injection Techniques and Tools” on April 1997 pp. 75-82.

[11] HaissamZiade, RaficAyoubi, and Raoul Velazco, “A Survey on
Fault Injection Techniques”, in The International Arab Journal of
Information Technology, Vol. 1, No. 2, pp.171-186, July 2004.

[12] Christmansson, J. ; Carlstedt Res. & Technol. AB, Goteborg,
Sweden ; Hiller, M. ; Rimen, M., “An experimental comparison of
fault and error injection” , on Software Reliability Engineering,
1998. ProceedingsThe Ninth International Symposium on: 4-7 Nov
1998, pp. 369 – 378.

[13] Entrena, L. ; Dept. of Electron. Technol., Univ. Carlos III of Madrid,
Leganés, Spain ; Garcia-Valderas,M. ; Fernandez-
Cardenal,R. ; Lindoso.A. in ,”Soft Error Sensitivity Evaluation of
Microprocessors by Multilevel Emulation-Based Fault Injection”, on
Computers, IEEE Transactions onon March 2012 Vol. 61, No. 3, pp.
313-322.

[14] Sterpone, L. ; Dipt. diAutom. e Inf., CAD Group, Italy ; Sabena,
D. ; Reorda, M.S, “A New Fault Injection Approach for Testing
Network-on-Chips” in Parallel, Distributed and Network-Based
Processing (PDP), 2012, 20th Euromicro International Conference
on 15-17 Feb. 2012, pp. 530 – 535.

[15] N. oh, P. Shirvani and E.J. McCluskey, “Control flow checking by
software signatures”, IEEE Transactions on Reliability, vol.51, pp.1,
2002.

[16] F. Restrepo-Calle_, A. Mart´ınez-A´ lvarez_, F.R. Palomoy, H.
Guzma´n-Miranday, M.A. Aguirrey and S. Cuenca-Asensi, “Rapid
Prototyping of Radiation-Tolerant Embedded Systems on FPGA” ,
in International Conference on Field Programmable Logic and
Applications,2010,pp.326-331

.

Nisha O. S et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 4582-4586

www.ijcsit.com 4586

